
Type Classes as Objects and Implicits

Bruno C. d. S. Oliveira
ROSAEC Center, Seoul National University

bruno@ropas.snu.ac.kr

Adriaan Moors Martin Odersky
EPFL

{adriaan.moors, martin.odersky}@epfl.ch

Abstract
Type classes were originally developed in Haskell as a dis-
ciplined alternative to ad-hoc polymorphism. Type classes
have been shown to provide a type-safe solution to impor-
tant challenges in software engineering and programming
languages such as, for example, retroactive extension of
programs. They are also recognized as a good mechanism
for concept-based generic programming and, more recently,
have evolved into a mechanism for type-level computation.

This paper presents a lightweight approach to type classes
in object-oriented (OO) languages with generics using the
CONCEPT pattern and implicits (a type-directed implicit pa-
rameter passing mechanism). This paper also shows how
Scala’s type system conspires with implicits to enable, and
even surpass, many common extensions of the Haskell type
class system, making Scala ideally suited for generic pro-
gramming in the large.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—Functional Lan-
guages, Object-Oriented Languages

General Terms Languages

Keywords Type classes, C++ concepts, Abstract datatypes,
Scala

1. Introduction
Type classes were introduced in Haskell (Peyton Jones 2003)
as a disciplined way of defining ad-hoc polymorphic abstrac-
tions (Wadler and Blott 1989). There are several language
mechanisms that are inspired by type classes: Isabelle’s
type classes (Haftmann and Wenzel 2006), Coq’s type
classes (Sozeau and Oury 2008), C++0X concepts (Gre-
gor et al. 2006), BitC’s type classes (Shapiro et al. 2008), or
JavaGI generalized interfaces (Wehr 2009).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

Lämmel and Ostermann (2006) show that type classes are
useful to solve several fundamental challenges in software
engineering and programming languages. In particular type
classes support retroactive extension: the ability to extend
existing software modules with new functionality without
needing to touch or re-compile the original source. Type
classes are also recognized (Bernardy et al. 2008; Garcia
et al. 2007; Siek and Lumsdaine 2008) as a good mechanism
for concept-based C++ style generic programming (Musser
and Stepanov 1988), and have more recently evolved into
a mechanism for type-level computation (Chakravarty et al.
2005b; Jones 2000; Schrijvers et al. 2008).

Existing proposals for type-class-like mechanisms in OO
languages are rather heavyweight. The JavaGI proposal is
to extend Java with generalized interfaces and generalized
interface implementations. Similarly, the C++0X concepts
proposal is to extend C++ with concepts and model (or
concept-map) declarations to express concept-interfaces and
their implementations. In some sense the additional con-
structs in JavaGI and C++0X overlap with conventional OO
interfaces and classes, which play similar roles for defining
the interfaces of objects and their implementations.

Type classes comprise various language constructs that
can be understood in isolation. The first role of type classes
is to define concepts: a set of requirements for the type pa-
rameters used by generic algorithms. For example, a sorting
algorithm on lists can be expressed generically, for any el-
ements of type T , provided that we know how to compare
values of type T . One way to achieve this in an OO language
with generics is to define the sorting function as follows:

def sort [T] (xs : List [T]) (ordT : Ord [T]) : List [T]

In this definition, the role of ordT is to provide the compar-
ison function for elements of type T . The Ord [T] interface,
expressed as a trait in Scala,

trait Ord [T] {
def compare (a : T,b : T) : Boolean
}

defines the ordering concept. Concepts are implemented for
particular types by a model, which corresponds to a type
class instance in Haskell, or an object in Scala.

object intOrd extends Ord [Int] {
def compare (a : Int,b : Int) : Boolean = a 6 b
}

However, this simple OO approach has one important
limitation in practice: constraints such as ordT have to be
explicitly passed to generic algorithms, like any other argu-
ments. While for the definition of sort above this may not
look too bad, many generic algorithms require multiple con-
straints on their type parameters, and passing all of these
explicitly is cumbersome.

The second role of type classes is to propagate constraints
like ordT automatically, making generic algorithms conve-
nient and practical to use. Scala took inspiration from type
classes and introduced implicits: a mechanism for implicitly
passing arguments based on their types. Thus, in Scala, the
ordering constraint can be implicitly passed by adding an
implicit qualifier before the argument:

def sort [T] (xs : List [T]) (implicit ordT : Ord [T]) : List [T]

Likewise potential candidate models can be considered by
the compiler by being qualified with an implicit keyword:

implicit object intOrd extends Ord [Int] . . .

This allows a convenient use of sort

scala> sort (List (3,2,1))
List (1,2,3)

just like the Haskell program using type classes. Further-
more, sort can be called with an additional ordering ar-
gument such as: sort (List (3,2,1)) (mySpecialOrd), where
mySpecialOrd is another model of the ordering concept for
integers. This is useful for resolving ambiguities: it is rea-
sonable to have various orderings for the same type.

In a way type-class-style concepts provide a service like
F-bounded polymorphism (Canning et al. 1989), which is
found in conventional OO languages like Java, C# or Scala.
Unlike type-parameter bounds, which impose constraints
directly on the values of the bounded type, concepts like
Ord [T] provide the evidence that T satisfies the constraints
externally. The drawback of concept-style constraints is that
dynamic dispatching over the instances of T is not available,
but in return support for multi-type concepts is better and
retroactive modeling of concepts becomes possible.

Contributions We describe a lightweight approach to type
classes that can be employed in any object-oriented language
that supports generics. We capture the essence of type class
programming as the CONCEPT pattern, and show how im-
plicits make the pattern practical to use. We illustrate our
approach using several applications and offer an answer to
Cook (2009)’s dinner quiz on the relation between objects
and ADTs: in an OO language with generics, ADT signa-
tures can be viewed as a particular class of objects.

We should note that implicits have been part of Scala for
a while now (Moors et al. 2008; Odersky et al. 2006) and, in
the Scala community, the encoding of type classes using im-
plicits is folklore. However, as so often with folklore, it was
never written down coherently, while the more advanced fea-
tures have not been documented at all: later sections of this
paper describe Scala’s answer to overlapping instances (Pey-
ton Jones et al. 1997), associated types (Chakravarty et al.
2005b), as well as how Scala’s approach to type classes
has surpasses Haskell type classes in some ways. These ad-
vanced features are used to introduce the idea of specify-
ing relations on types using implicits, which is illustrated
through several examples. Finally, we show that Scala has
excellent support for generic programming.

Running the examples Most examples compile as-is us-
ing Scala 2.8.0. Some of the more advanced ones rely on ex-
perimental support for dependent method types, which must
be enabled using the−Xexperimental switch. Unfortunately,
some examples are affected by bugs related to the interac-
tion between dependent method types and implicits. These
are fixed in a development branch1, which will be merged
into trunk shortly, and thus appear in nightly builds leading
up to the 2.8.1 release.

2. Type Classes in Haskell
This section introduces Haskell type classes as originally
proposed by Wadler and Blott (1989), as well as some sim-
ple, common extensions.

2.1 Single-parameter type classes
The original model of type classes consists of single parame-
ter type classes, which enables the definition of ad-hoc over-
loaded functions like comparison, pretty printing or parsing.

class Ord a where
(6) :: a→ a→ Bool

class Show a where
show :: a→ String

class Read a where
read :: String→ a

A type class declaration consists of: a class name such as
Ord, Show or Read; a type parameter; and a set of method
declarations. Each of the methods in the type class declara-
tion should have at least one occurrence of the type param-
eter in their signature (either as an argument or as a return
type). If we think of the type parameter a in these type class
declarations as the equivalent of the self argument in an OO
language, we can see that a few different types of methods
can be modeled:

1 http://github.com/adriaanm/scala/tree/topic/retire_

debruijn_depmet

• Consumer methods like show are the closest to typical
OO methods. They take one argument of type a, and
using that argument they produce some result.

• Binary methods like 6 can take two arguments of type a,
and produce some result. This appears to show some con-
trast with OO programming, since it is well-known that
binary (and n-ary methods in general) are hard to deal
with (Bruce et al. 1995). However, we should note that
type class binary method arguments are only statically
dispatched and not dynamically dispatched.

• Factory methods such as read return a value of type a
instead of consuming values of that type. In OOP factory
methods can be dealt with in different ways (for example,
by using static methods).

Type class declarations express generic programming
concepts (Bernardy et al. 2008), and the models (or im-
plementations) of these concepts are given by type classes
instances. For example

instance (Ord a,Ord b)⇒ Ord (a,b) where
(xa,xb) 6 (ya,yb) = xa< ya ∨ (xa≡ ya ∧ xb 6 yb)

declares a model of the ordering concept for pairs. In this
case, the ordering model itself is parametrized by an order-
ing model for each of the elements of the pair. With the or-
dering constraints we can define a generic sorting function:

sort :: Ord a⇒ [a]→ [a]

This means sort takes a list of elements of an arbitrary type
a and returns a list of the same type, as long as the type of
the elements is in the Ord type class, hence the Ord a⇒
context. A call to sort will only type check if a suitable type
class instance can be found. Other than that, the caller does
not need to worry about the type class context, as shown in
the following interaction with a Haskell interpreter:

Prelude> sort [(3,5),(2,4),(3,4)]
[(2,4),(3,4),(3,5)]

One instance per type A characteristic of (Haskell) type
classes is that only one instance is allowed for a given type.
For example, the alternative ordering model for pairs

instance (Ord a,Ord b)⇒ Ord (a,b) where
(xa,xb) 6 (ya,yb) = xa 6 ya ∧ xb 6 yb

in the same program as the previous instance is forbidden
because the compiler automatically picks the right type class
instance based on the type parameter of the type class. Since
in this case there are two type class instances for the same
type, there is no sensible way for the compiler to choose one
of these two instances.

2.2 Common extensions
Multiple-parameter type classes A simple extension to
Wadler and Blott’s proposal are multiple parameter type-

classes (Peyton Jones et al. 1997), which lifts the restriction
of a single type parameter:

class Coerce a b where
coerce :: a→ b

instance Coerce Char Int where
coerce = ord

instance Coerce Float Int where
coerce = floor

The class Coerce has two type parameters a and b and
defines a method coerce, which converts a value of type a
into a value of type b. For example, by defining instances
of this class, we can define coercions from characters to
integers and from floating point numbers to integers.

Overlapping instances Another common extension of
type classes allows instances to overlap (Peyton Jones et al.
1997), as long as there is a most specific one. For example:

instance Ord a⇒ Ord [a] where . . .

instance Ord [Int] where . . .

Despite two possible matches for [Int], the compiler is able
to make an unambiguous decision to which of these in-
stances to pick by selecting the most specific one. In this
case, the second instance would be selected.

3. Implicits
This section introduces the Scala implementation of implic-
its and shows how implicits provide the missing link for type
class programming to be convenient in OO languages with
generics.

3.1 Implicits in Scala
Scala automates type-driven selection of values with the
implicit keyword. A method call may omit the final argu-
ment list if the method definition annotated that list with the
implicit keyword, and if, for each argument in that list, there
is exactly one value of the right type in the implicit scope,
which roughly means that it must be accessible without a
prefix. We will describe this in more detail later.

To illustrate this, the following example introduces an
implicit value out, and a method that takes an implicit ar-
gument o : PrintStream. The first invocation omits this argu-
ment, and the compiler will infer out. Of course, the pro-
grammer is free to provide an explicit argument, as illus-
trated in the last line.

import java.io.PrintStream
implicit val out = System.out

def log (msg : String) (implicit o : PrintStream)
= o.println (msg)

log ("Does not compute!")]
log ("Does not compute!!") (System.err)

Note that the arguments in an implicit argument list are part
of the implicit scope, so that implicit arguments are propa-
gated naturally. In the following example, logTm’s implicit
argument o is propagated to the call to log.

def logTm (msg : String) (implicit o : PrintStream) : Unit
= log ("["+new java.util.Date ()+"]"+msg)

The implicit argument list must be the last argument list and
it may either be omitted or supplied in its entirety. However,
there is a simple idiom to encode a wildcard for an implicit
argument. To illustrate this with our running example, sup-
pose we want to generalize logTm so that we can specify an
arbitrary prefix, and that we want that argument to be picked
up from the implicit scope as well.

def logPrefix (msg : String)
(implicit o : PrintStream,prefix : String) : Unit
= log ("["+prefix+"]"+msg)

Now, with the following definition of the polymorphic
method ?,

def ?[T] (implicit w : T) : T = w

which “looks up” an implicit value of type T in the implicit
scope, we can write logPrefix ("a") (?,"pre"), omitting the
value for the output stream, while providing an explicit value
for the prefix. Type inference and implicit search will turn
the call ? into ?[PrintStream] (out), assuming out is in the
implicit scope as before.

Implicit scope When looking for an implicit value of
type T , the compiler will consider implicit value definitions
(definitions introduced by implicit val, implicit object, or
implicit def), as well as implicit arguments that have type
T and that are in scope locally (accessible without prefix)
where the implicit value is required. Additionally, it will
consider implicit values of type T that are defined in the
types that are part of the type T , as well as in the companion
objects of the base classes of these parts. The set of parts of
a type T is determined as follows:

• for a compound type T1 with . . . with Tn, the union of
the parts of Ti, and T ,

• for a parameterized type S [T1, . . . ,Tn], the union of the
parts of S and the parts of Ti,

• for a singleton type p.type, the parts of the type of p,
• for a type projection S # U, the parts of S as well as S # U

itself,
• in all other cases, just T itself.

Figure 1 illustrates the local scoping of implicits. Two
models for Monoid [Int] exist, but the scope each of them is
limited to the enclosing declaration. Thus the definition of
sum in object A will use the sumMonoid implicit. Similarly,
in the object B, product will use the prodMonoid implicit.

trait Monoid [A] {
def binary op (x : A,y : A) : A
def identity : A
}
def acc [A] (l : List [A]) (implicit m : Monoid [A]) : A =

l.foldLeft (m.identity) ((x,y)⇒ m.binary op (x,y))

object A {
implicit object sumMonoid extends Monoid [Int] {

def binary op (x : Int,y : Int) = x+ y
def identity = 0
}
def sum (l : List [Int]) : Int = acc (l)
}
object B {

implicit object prodMonoid extends Monoid [Int] {
def binary op (x : Int,y : Int) = x∗ y
def identity = 1
}
def product (l : List [Int]) : Int = acc (l)
}
val test : (Int, Int, Int) = {

import A.

import B.

val l = List (1,2,3,4,5)

(sum (l),product (l),acc (l) (prodMonoid))
}

Figure 1. Locally scoped implicits in Scala.

Furthermore, both implicits can be brought into scope us-
ing import and the user can choose which implicit to use
by explicitly parameterizing a declaration that requires a
monoid. Thus, the result of executing test is (15,120,120).
Note that, if instead of acc (l) (prodMonoid) we had used
acc (l) in the definition of test, an ambiguity error would be
reported, because two different implicit values of the same
type (prodMonoid and sumMonoid) would be in scope.

Implicit search and overloading To determine an implicit
value, the compiler searches the implicit scope for the value
with the required type. If no implicit can be found for an
implicit argument with a default value, the default value is
used. If more than one implicit value has the right type,
there must be a single “most specific” one according to
the following ordering, which is defined in more detail by
(Odersky 2010, 6.26.3).

An alternative A is more specific than an alternative B if
the relative weight of A over B is greater than the relative
weight of B over A. The relative weight is a score between 0
and 2, where A gets a point over B for being as specific as B,

and another if it is defined in a class (or in its companion ob-
ject) which is derived from the class that defines B, or whose
companion object defines B. Roughly, a method is as spe-
cific as a member that is applicable to the same arguments,
a polymorphic method is compared to another member after
stripping its type parameters, and a non-method member is
as specific as a method that takes arguments or type param-
eters.

Finally, termination of implicit search is ensured by keep-
ing track of an approximation of the types for which an im-
plicit value has been searched already (Odersky 2010, 7.2).

3.2 Implicits as the missing link
Implicits provide the type-driven selection mechanism that
was missing for type class programming to be convenient in
OO. For example, the Ord type class and the pair instance
that was presented in Section 2 would correspond to:

trait Ord [T] {
def compare (x : T,y : T) : Boolean

}

implicit def OrdPair [A,B]

(implicit ordA:Ord [A], ordB:Ord [B])
= new Ord [(A,B)] {

def compare (xs : (A,B),ys : (A,B)) = . . .

}

Note that the syntactic overhead compared to Haskell (high-
lighted in gray) includes useful information: type class in-
stances are named, so that the programmer may supply them
explicitly to resolve ambiguities manually.

The cmp function is rendered as the following method:

def cmp [a] (x : a,y : a) (implicit ord : Ord [a]) : Boolean
= ord.compare (x,y)

This common type of implicit argument can be abbreviated
using context bounds (highlighted in gray):

def cmp [a:Ord] (x : a,y : a) : Boolean
= ?[Ord [a]].compare (x,y)

Since we do not have a name for the type class instance
anymore, we use the ? method to retrieve the implicit
value for the type Ord [a]. Note that the same shorthand
can be used in the OrdPair method above, reducing the
syntactic noise. Furthermore, the cmp provides a slightly
more terse interface to the Ord type class in the sense
that a client can now call cmp ((3,4),(5,6)) instead of
?[Ord [(Int, Int)]].compare ((3,4),(5,6)).

The pimp-my-library pattern Neither cmp ((3,4),(5,6))
or ?[Ord [(Int, Int)]].compare ((3,4),(5,6)) are idiomatic in
OOP. The ‘pimp my library’ pattern (Odersky 2006) uses
implicits to allow the more natural x.compare (y), assum-
ing the type of x does not define the compare method. In

trait Ord [T] {
def compare (x : T,y : T) : Boolean
}
class Apple (x : Int) {}
object ordApple extends Ord [Apple] {

def compare (a1 : Apple,a2 : Apple) = a1.x 6 a2.x
}
def pick [T] (a1 : T,a2 : T) (ordA : Ord [T]) =

if (ordA.compare (a1,a2)) a2 else a1

val a1 = new Apple (3)
val a2 = new Apple (5)

val a3 = pick (a1,a2) (ordApple)

Figure 2. Apples to Apples with the CONCEPT pattern.

Scala, implicit values that have a function type act as im-
plicit conversions. For a method call such as x.compare (y)
to be well-typed, the type of x must either define a suitable
compare method, or there must be an implicit conversion c
in scope so that (c (x)).compare (y) is well-typed without
further use of implicit conversions. Thus, it suffices to de-
fine an implicit method (the compiler converts methods to
functions when needed) mkOrd that will convert a value of
a type that is in the Ord type class into an object that has the
expected interface:

implicit def mkOrd [T : Ord] (x : T) : Ordered [T]
= new Ordered [T] {

def compare (o : T) = ?[Ord [T]].compare (x,o)
}

Leaving off the target of the comparison in the compare
method, which has been passed to the implicit conversion
mkOrd, Ordered is defined as:

trait Ordered [T] {
def compare (o : T) : Boolean
}

4. The CONCEPT Pattern
This section introduces the CONCEPT pattern, which is in-
spired by the basic Haskell type classes presented in Sec-
tion 2 and C++ concepts. This pattern can be used in any
OO language that supports generics, such as current versions
of Java or C#. However, without support for implicits, some
applications can be cumbersome to use due to additional pa-
rameters for the constraints.

4.1 Concepts: type-class-style interfaces in OO
The CONCEPT pattern aims at representing the generic pro-
gramming notion of concepts as conventional OO interfaces

with generics. Concepts describe a set of requirements for
the type parameters used by generic algorithms. Figure 2
shows a small variation of the apples-to-apples motivational
example for concepts (Garcia et al. 2007). This example
serves the purpose of illustrating the different actors in the
CONCEPT pattern. The trait Ord [T] is an example of a
concept interface. The type argument T of a concept inter-
face is the modeled type; an Apple is a concrete modeled
type. Actual objects implementing concept interfaces such
as ordApple are called models. Finally, whenever ambigu-
ity arises, we will refer to methods in a concept interface as
conceptual methods to distinguish them from conventional
methods defined in the modeled type.

The CONCEPT pattern can model n-ary, factory and con-
sumer methods just like type classes. Concept interfaces for
the type classes Show and Read presented in Section 2.1 are:

trait Show [T] {
def show (x : T) : String
}
trait Read [T] {

def read (x : String) : T
}

The printf example in Section 2.1 presents an example
of a concept-interface with a factory method. Most of the
examples in this paper involve consumer methods.

Multi-type Concepts Using standard generics it is possible
to model multi-type concepts. That is, concepts that involve
several different modeled types. For example, the Coerce
type class in Section 2.2 can be expressed as a concept
interface as:

trait Coerce [A,B] {
def coerce (x : A) : B
}

The zipWithN example (in Section 6.4) and generalized
constraints (in Section 6.6) provide applications of multi-
type concepts.

Benefits of the CONCEPT pattern The CONCEPT pattern
offers the following advantages:

1. Retroactive modeling: The CONCEPT pattern allows
mimicking the addition of a method to a class with-
out having to modify the original class. For example,
in Figure 2, the declaration of Apple did not require any
knowledge about the compare functionality upfront. The
ordApple model adds support for such method externally.

2. Multiple method implementations: It is possible to have
multiple implementations of conceptual methods for the
same type. For example, an alternative ordering model
for apples can be provided:

object ordApple2 extends Ord [Apple] {
def compare (a1 : Apple,a2 : Apple) = a1.x>a2.x
}

3. Binary (or n-ary) methods: Conceptual methods can have
multiple arguments of the manipulated type. Thus a sim-
ple form of type-safe statically dispatched n-ary methods
is possible.

4. Factory methods: Conceptual methods do not need an
actual instance of the modeled type. Thus they can be
factory methods.

Limitations and Alternatives The main limitation of the
CONCEPT pattern is that all arguments of conceptual meth-
ods are statically dispatched. Thus, conceptual methods are
less expressive than conventional OO methods, which allow
the self-argument to be dynamically dispatched, or multi-
methods (Chambers and Leavens 1995), in which all argu-
ments are dynamically dispatched.

Bounded polymorphism offers an alternative to type-
class-style concepts. With bounded polymorphism the apples-
to-apples example could be modeled as follows:

trait Ord [T] {
def compare (x : T) : Boolean
}
class Apple (x : Int) extends Ord [Apple] . . .

The main advantage of this approach is that compare is
a real, dynamically dispatched, method of Apple, and all the
private information about Apple objects is available for the
method definition. However, with this alternative, modeled
types such as Apple have to state upfront which concept in-
terfaces they support. This precludes retroactive modeling
and makes it harder to support multiple implementations of
a method for the same object. Multi-type concepts are pos-
sible, but they can be quite cumbersome to express and they
can lead to a combinatorial explosion on the number of con-
cept interfaces (Järvi et al. 2003). Factory methods can be
supported with this approach through a static method, al-
though this dictates a single implementation. Binary meth-
ods such as compare are also possible, although they are
asymmetric in the sense that the first argument is dynami-
cally dispatched, whereas the second argument is statically
dispatched.

Language Support In languages such as Java or C# con-
cepts need to be explicitly passed as in Figure 2. In Scala
it is possible to pass concepts implicitly as shown in Sec-
tion 3.2. Additionally, in languages like Java or C#, there is
some syntactic noise because the method cannot be invoked
directly on the manipulated object:

a = new Apple (3);

a.compare (new Apple (5));

is invalid. Instead, we must write:

a = new Apple (3);

ordApple.compare (a,new Apple (5));

In Scala, as discussed in Section 3.2, it is possible to elim-
inate this overhead using implicits. All that is needed is 1)
mark the models (and any possible constraints) with implicit
and 2) create a simple interface for the comparison function
that takes the ordering object implicitly. Thus provided that
the apples-to-apples is modified as follows:

implicit object ordApple extends Ord [Apple] . . .

def cmp [A] (x : A,y : A) (implicit ord : Ord [A]) =
ord.compare (x,y)

Then we can write:

a = new Apple (3);

cmp (a,new Apple (5));

Modifying pick similarly,

def pick [T : Ord] (a1 : T,a2 : T) =
if (cmp (a1,a2)) a2 else a1

allows rewriting the value a3 as:

val a3 = pick (a1,a2)

In C#, extension methods provide language support for (stat-
ically dispatched) retroactive implementations. Haskell type
classes, JavaGI and the C++0X concepts proposal provide
direct language support for concept-style interfaces. Jav-
aGI’s generalized interfaces offer more expressiveness than
the CONCEPT pattern. JavaGI’s retroactive implementations
support multi-methods on the instances of the manipulated
types.

The Scala approach to concept-style interfaces is to ex-
press them with the CONCEPT pattern and implicits. This
makes the pattern very natural to use without an additional,
pattern-specific, language construct.

5. Applications and Comparison with Type
Classes

The CONCEPT pattern has several applications, including
some that go beyond concepts’ traditional application, con-
strained polymorphism. The pattern is illustrated by exam-
ple in the next few subsections. This section also compares
the programs written with the CONCEPT pattern with simi-
lar programs using type classes. To help in this comparison,
the significant differences between the OO programs and the
equivalent programs using type classes are marked in gray.
The corresponding Haskell code is available in Appendix A.

trait Eq [T] {
def equal (a : T,b : T) : Boolean
}
trait Ord [T] extends Eq [T] {

def compare (a : T,b : T) : Boolean
def equal (a : T,b : T) : Boolean =

compare (a,b) ∧ compare (b,a)
}

class IntOrd extends Ord [Int] {
def compare (a : Int,b : Int) = a 6 b
}

class ListOrd [T] (ordD:Ord [T]) extends Ord [List [T]] {
def compare (l1 : List [T], l2 : List [T]) =

(l1, l2) match {
case (x :: xs,y :: ys)⇒

if (ordD.equal (x,y)) compare (xs,ys)
else ordD.compare (x,y)

case (,Nil) ⇒ false
case (Nil,) ⇒ true
}

}

class ListOrd2 [T] (ordD : Ord [T]) {
extends Ord [List [T]] {
private val listOrd = new ListOrd [T] (ordD)

def compare (l1 : List [T], l2 : List [T]) =

(l1.length< l2.length) ∧ listOrd.compare (l1, l2)

}

Figure 3. Equality and ordering concepts and some models.

5.1 Ordering concept
Figure 3 shows how to implement an ordering concept us-
ing the CONCEPT pattern. This concept is similar to the one
used in Figure 2, except that it introduces an equality con-
cept Eq [T]. For convenience, we use subtyping to express
the refinement relation between the concepts Eq and Ord,
although delegation, which is closer to the typical Haskell
implementation (see Figure 7), would work as well. In con-
ventional OO languages such as Java or C# the traits Eq and
Ord would correspond to interfaces. Thus, the default def-
inition for equality in the Ord trait would not be definable
directly on the interface. Scala traits offer a very convenient
way to express such default definitions, but such functional-
ity can be mimicked in other ways in Java or C#. The classes
IntOrd, ListOrd and ListOrd2 define three models of Ord;
the first one for integers and the other two for lists.

def cmp [T] (x : T,y : T) (implicit ord : Ord [T]) =

ord.compare (x,y)

implicit val IntOrd = new Ord [Int] {. . .}

implicit def ListOrd [T] (implicit ordD:Ord [T]) =
new Ord [List [T]] {. . .}

def ListOrd2 [T] (implicit ordD : Ord [T]) =

new Ord [List [T]] {. . .}

Figure 4. Variation of the Ordering solution using implicits.

The three models illustrate the retroactive capabilities of
the CONCEPT pattern: the models are added after Int and
List [T] have been defined. The two models for lists illustrate
that multiple models can co-exist at the same time.

Comparison with Type Classes The essential difference
between the OO code in Figure 3 and the similar definitions
using type classes (which can be found in Figure 13) is
that models, and model arguments, need to be named. In
Haskell, instances can be viewed as a kind of anonymous
objects, which only the compiler gets direct access to. This
partly explains why the definition of ListOrd2 is grayed out:
in Haskell two instances for the same modeled type are
forbidden.

In the OO version, it is necessary to first create the models
explicitly. For example:

def sort [T] (xs : List [T]) (ordT : Ord [T]) : List [T] = . . .

val l1 = List (7,2,6,4,5,9)
val l2 = List (2,3)

val test = new ListOrd (new IntOrd ()).compare (l1, l2)

val test2 = new ListOrd2 (new IntOrd ()).compare (l1, l2)

val test3 = sort (l1) (new ListOrd (new IntOrd ()))

In the type class version, the equivalent code would be:

sort :: Ord t⇒ [t]→ [t]

l1 =[7,2,6,4,5,9]
l2 =[2,3]

test = compare l1 l2
test3 = sort l1

Clearly, in the OO version, the use of compare in test and
test2 is less convenient than simply calling compare l1 l2,
but it does offer the possibility of switching the implemen-
tation of the comparison operation in test2. In test3 creating
the models explicitly is also somewhat verbose and inconve-
nient.

Solution using implicits The convenience of type classes
can be recovered with implicits. Figure 4 shows a variation

trait Set [S] {
val empty : S
def insert (x : S,y : Int) : S
def contains (x : S,y : Int) : Boolean
def union (x : S,y : S) : S
}

class ListSet extends Set [List [Int]] {
val empty = List ()
def insert (x : List [Int],y : Int) = y :: x
def contains (x : List [Int],y : Int) = x.contains (y)
def union (x : List [Int],y : List [Int]) = x.union (y)
}

class FunctionalSet extends Set [Int⇒ Boolean] {
val empty = (x : Int)⇒ false
def insert (f : Int⇒ Boolean,y : Int) =

z⇒ y.equals (z) ∨ f (z)
def contains (f : Int⇒ Boolean,y : Int) = f (y)
def union (f : Int⇒ Boolean,g : Int⇒ Boolean) =

y⇒ f (y) ∨ g (y)
}

Figure 5. An ADT signature and two implementations.

of the code in Figure 3. Only the differences are shown:
definitions are used instead of conventional OO classes to
define the models for Ord; and we use a definition cmp to
provide a nice interface to the compare method. The first two
models are implicit, but ListOrd2 cannot be made implicit
because it would clash with ListOrd. The client code for the
test functions is simplified, being comparable to the version
with Haskell type classes. Furthermore, it is still possible to
define test2.

val test = cmp (l1, l2)
val test2 = cmp (l1, l2) (ListOrd2)
val test3 = sort (l1)

5.2 Abstract data types
Cook (2009) shows that type classes can be used to imple-
ment what is effectively the algebraic signature of an Ab-
stract Data Type (ADT). Programs using these type classes
in a certain disciplined way have the same abstraction ben-
efits as ADTs. Exploiting this observation, we now show a
simple and practical encoding of ADTs in an object-oriented
language with generics using the CONCEPT pattern. ADT
signatures show an application of the pattern that is differ-
ent from how concepts are traditionally used. Additionally,
it illustrates why passing a model explicitly is sometimes de-
sirable.

Figure 5 models an ADT signature for sets of integers
using the CONCEPT pattern. The trait Set [S], the concept
interface, defines the ADT signature for sets. The type S is

the modeled type. The method empty is an example of a
factory method: a new set is created without any previous
set instance. The methods insert and contains are examples
of consumer methods: they act on existing instances of sets
to achieve their goal. Finally union provides an example of
a binary method: two set instances are needed to take their
union. Two alternative models are shown: ListSet, using a
lists to model sets; and FunctionalSet, which uses a boolean
predicate instead.

The client programs using models of ADT signatures can
be used in a very similar way to ADTs implemented using
ML modules (MacQueen 1984). For example:

val setImpl1 = new ListSet ()

val setImpl2 = new FunctionalSet ()

def test1 [S] (s:Set [S]) : Boolean =
s.contains (s.insert (s.insert (s.empty,5),6),6)

In this case two different implementations of sets, setImpl1
and setImpl2, are created. The definition test1 takes a set
implementation and defines a program using that imple-
mentation. Importantly, the set implementation is polymor-
phic on S, which means that any subclass of Set [S] will be
valid as an argument. In particular, both test1 (setImpl1) and
test1 (setImpl2) are valid arguments.

A reasonable question to ask at this point is whether the
programs written with ADT signatures are actually related
to conventional programs using ADTs. We discuss this issue
next.

Where is the existential? In their seminal paper on ADTs,
Mitchell and Plotkin (1988) show that “abstract types have
existential type”. Formally an ADT can be viewed has two
distinct parts: the ADT signature and the existential encap-
sulating the type of the concrete representation:

SetADT = ∃ S. Set [S]

The trait Set [S] defines only the signature, but the existential,
which provides information hiding, is missing. This means
that certain programs can exploit the concrete representa-
tion, breaking encapsulation. Still, as Cook observes, it is
possible to enforce information hiding with some discipline
and the help of the type system; if client programs do not
exploit the concrete representations of S then the same ben-
efits of ADTs apply. To see why this is the case consider the
equivalent type-theoretic version of the test1 program:

test1 : SetADT→ Boolean
test1 = λ s→

s.contains (s.insert (s.insert (s.empty,5),6),6)

Unfolding the SetADT type into its definition yields

test1 : (∃ S. Set [S])→ Boolean

and this type is isomorphic to

test1 :∀ S. Set [S]→ Boolean

which is the type-theoretic type corresponding to the Scala
type of test1.

In other words, test1 has the existential type that pro-
vides the information hiding of the equivalent program with
ADTs. While it is certainly debatable whether or not the ex-
istential should be placed in the actual ADT definition, con-
cept interfaces are a simple way to encode ADT-like pro-
grams in any OO language with generics. This provides an
alternative answer to Cook’s dinner quiz on the relationship
between objects an ADTs: in an OO language with generics,
ADT signatures can be viewed as concept interfaces, and im-
plementations of these signatures can be modeled as objects.

Comparison with Type Classes There are no significant
differences between the OO version of the program and the
Haskell version (which can be found in Figure 14), except
that the models need to be named. However, client code is
more interesting to compare. While in the OO version we
write:

def test1 [S] (s:Set [S]) : Boolean =
s.contains (s.insert (s.insert (s.empty,5),6),6)

the Haskell version of this code

test1 :: Set s⇒ Bool
test1 = contains (insert (insert empty 5) 6)

does not work. The problem is that this program is ambigu-
ous: since Haskell type classes work under the assumption
that every dictionary is inferred by the compiler, there is no
straightforward way to tell test1 which specific instance of
Set is to be used.

Programs using ADT-like structures show how certain
programs do not fit well with the implicit nature of type
classes. To be more precise, ADTs fit very well within the
“class” of programs that type classes capture, however ex-
plicitly passing “type class instances” (the models of ADT
signatures) is desirable. The CONCEPT pattern solution is
better in this respect because the models can be explicitly
passed.

5.3 Statically-typed printf
Our final application of the CONCEPT pattern is a statically-
typed version of the C printf function similar to the one pre-
sented by (Kennedy and Russo 2005). This example shows
that often it is possible to model structures resembling exten-
sible (in the sense that new constructors can be added) gen-
eralized algebraic datatypes (GADTs) (Peyton Jones et al.
2006) using the CONCEPT pattern.

Figure 6 shows the implementation of a simple version
of the C-style printf function using the CONCEPT pattern.
The implementation exploits an insight by (Danvy 1998),
who realized that by changing the representation of the for-
mat string, it is possible to encode printf in a conventional

trait Format [A] {
def format (s : String) : A
}

def printf [A] (format:Format [A]) : A =

format.format ("")

class I [A] (formatD:Format [A])
extends Format [Int⇒ A] {
def format (s : String) = i⇒

formatD.format (s+ i.toString)
}

class C [A] (formatD:Format [A])
extends Format [Char⇒ A] {
def format (s : String) = c⇒

formatD.format (s+ c.toString)
}

class E extends Format [String] {
def format (s : String) = s
}

class S [A] (l : String, formatD : Format [A])

extends Format [A] {
def format (s : String) = formatD.format (s+ l)

}

Figure 6. Printf as an instance of the CONCEPT pattern

Hindley-Milner type system. The basic idea of the OO ver-
sion is to use a concept interface Format to represent the
format string of printf . Noteworthy, the format conceptual
method is a factory: it creates instances of the modeled types.
Four different models are provided: one for integers, an-
other for characters, a termination string and string literals.
One advantage of this solution is that it is easy to introduce
new format specifiers simply by creating a new model of the
Format concept.

Comparison with Type Classes Like with the previous
two examples, the models and model arguments need to be
named in the OO version. An important difference is that,
with type classes, we cannot implement a corresponding
instance for the S [A] model. The problem is that, to define
S, a String argument is required but type class instances can
only take type class dictionaries in the instance constraints.
Thus, the following is not allowed:

instance (String,Format a)⇒ Format a where . . .

Another difference concerns the client code. In the OO ver-
sion, the formatting string needs to be explicitly constructed
and passed. This has both advantages and disadvantages.

The advantage is that the format string can be chosen pre-
cisely, as it it the case for the standard printf function.

val fmt : Format [Int⇒ Char⇒ String] =
new S ("Int: ",new I (new S (" Char: ",

new C (new S (".",new E)))))

val test = printf (fmt) (3) (’c’)

For example, we can construct format strings using the
instances of the S class. In Haskell, such flexibility is not eas-
ily available. Nevertheless, if such flexibility is not required,
the dictionary is inferred in Haskell, making the similar pro-
grams more compact.

test :: String
test = printf (3 :: Int) ’c’

Finally, we should note that if we modify the OO version into
a more idiomatic version using Scala’s implicits (as done for
the ordering example in Section 5.1), then we can also infer
the same format strings as in the Haskell version.

5.4 Type class programs are OO programs
As we have seen so far, programs written with type classes
seem to have a close correspondence with OO programs.
Still, how can we more precisely pinpoint the relationship
between a Haskell type class program and an OO program?

One answer to this question, which we describe next,
lies on the relationship between the dictionary transla-
tion (Wadler and Blott 1989) of Haskell type classes and
a simple form of the functional recursive records (Cook and
Palsberg 1994) encoding of OO programs.

The dictionary translation, which is used by most Haskell
compilers, converts a program using type classes into a pro-
gram using no type classes. This translation is necessary be-
cause type classes are a language mechanism of the source
language, but most Haskell compilers use core languages
(usually a variant of System F), which does not have a native
notion of type classes.

Figure 7 shows how the program in Figure 13 looks
like after the dictionary translation. Like with the OO pro-
grams, the parts that do not have direct correspondents in the
Haskell type class code are highlighted in gray. Essentially
what happens is that the type class Ord is translated into a
program using a record. Each instance becomes a value (or,
more precisely, a function that takes the dictionaries for the
class contexts, if any) that represents the corresponding dic-
tionary.

In the translated code, many of the characteristics of the
OO version are present. One similarity is that the “instances”
and the arguments need to be named. For example, the corre-
sponding value for the equality dictionary for lists is defined
as:

listOrd::Ord a→ Ord [a]
listOrd ordD = Ord . . .

data Ord a = Ord {
eq :: a→ a→ Bool,
compare :: a→ a→ Bool
}

intOrd::Ord Int
intOrd = Ord {

eq = λa b→ compare intOrd a b ∧
compare intOrd b a,

compare = λx y→ x 6 y
}

listOrd::Ord a→ Ord [a]
listOrd ordD = Ord {

eq = λa b→ compare (listOrd ordD) a b ∧
compare (listOrd ordD) b a,

compare = λ l1 l2→ case (l1, l2) of
(x : xs,y : ys)→

if (eq ordD x y)
then compare (listOrd ordD) xs ys

else compare ordD x y
(,[]) → False
(,) → True

}

Figure 7. Ordering after the dictionary translation.

Here, listOrd is the name of the dictionary constructor and
ordD is the name of the argument of the constructor. Another
similarity is that in the invocations of the compare methods:
the dictionary value for the method is also explicit. For
example,

compare ordD x y

As it turns out, the dictionary translation version of the
Haskell program has so much in common with the OO ver-
sion because it corresponds to a simple form of the recursive
records functional encoding of the OO program.

The only significant difference between the dictionary
translation version and the OO version, highlighted in gray
next, is that the Haskell version has some explicit recursive
calls on listOrd ordD:

listOrd :: Ord a→ Ord [a]
listOrd ordD = Ord {

. . .

compare = λ l1 l2→ case (l1, l2) of
(x : xs,y : ys)→

if (eq ordD x y)
then compare (listOrd ordD) xs ys

else compare ordD x y
. . .

The recursive records interpretation of OO programs also
helps explaining this (superficial) difference. In the OO
program there is an implicitly passed self-argument in
compare (xs,ys) (this is sugar for this.compare (xs,ys)) and
this self-argument is a recursive call in the corresponding
recursive records interpretation. What is happening in the
dictionary translation is that recursive calls are directly used.

In summary, the relationship between type classes and
OO programs is this: every type class program translated us-
ing the dictionary translation corresponds to a OO program
encoded using a simple form of the recursive records func-
tional OO encoding.

6. Advanced Uses of Type Classes
This section briefly explains GHC Haskell’s associated types
and shows in detail how they can be encoded in Scala using
type members and dependent method types, which are also
first introduced. The encoding of associated types and other
advanced features of Scala (such as prioratized overlapping
implicits) are illustrated with three examples: type-safe ses-
sion types, an n-ary version of the zipWith function, and an
encoding of generalized constraints. We conclude this sec-
tion with a description of the pattern that is common to all
of these examples.

6.1 Associated types in GHC Haskell
The Glasgow Haskell Compiler (GHC) (Peyton Jones et al.
2009) is a modern Haskell implementation that provides
a type class mechanism that goes well beyond Wadler’s
original proposal. Of particular interest is the use of type
classes for type-level computation using extensions such as
associated types (Chakravarty et al. 2005b).

Associated types are type declarations that are associated
to a type class and that are made concrete in the class’s
instances, just like type class methods. For example, the
class Collects represents an interface for collections of type
c with an associated type Elem c, which denotes the type of
the elements of c.

class Collects c where
type Elem c
empty :: c
insert :: c→ Elem c→ c
toList :: c→ [Elem c]

Two possible instances are:

instance Collects BitSet where
type Elem BitSet = Char
. . .

instance (Collects c,Hashable (Elem c))⇒
Collects (Array Int c) where

type Elem (Array Int c) = Elem c
. . .

The basic idea is that, for a BitSet collection, the associated
element type should be characters. For arrays of values of
some type c, the type of the elements should be the same as
the type of the elements of c itself.

Associated types require type-level computation. In the
Collects example this manifests itself whenever a value of
type Elem c is needed. For example, when using insert the
second argument has the type Elem c. For an array of bit sets
Array Int BitSet the type Elem (Array Int BitSet) should be
evaluated to Char, in order for the type-checker to validate
suitable values for that call. This entails unfolding the asso-
ciated type definitions to conclude that the element type of
an array of bit sets is indeed a character.

6.2 Implicits and type members
Associated types fell out for free in Scala, with the introduc-
tion of implicits, due to existing support for type members.
Before illustrating this, we briefly introduce type members,
path-dependent types and dependent method types.

A type member is a type that can be selected on an
object. Like its value-level counterpart, a type member may
be abstract, in which case it is similar to a type parameter,
or it may be concrete, serving as a type alias. For type
safety, an abstract type member may only be selected on a
path (Odersky et al. 2003), a stable (immutable) value.

Technically, types may only be selected on types, but a
path p is readily turned into a singleton type p.type, which is
the type that is inhabited by exactly one value: the object ref-
erenced by p. The type selection p.T , where T is a type mem-
ber defined in the type of p, is syntactic sugar for p.type # T .
We say that a type that contains the type p.type depends on
the path p. The type p.T is a path-dependent type.

Since a method argument is considered a stable value, a
type may depend on it. A method type that depends on one
or more of the method’s arguments is called a dependent
method type. The simplest example of such a type arises in
the following version of the identity method:

def identity (x : AnyRef) : x.type = x

Since values are not allowed in paths (for now), this
version of identity must be limited to references. Using this
identity, we can statically track that y and y2 are aliases:

val y = "foo"
val y2 : y.type = identity (y)

For now, these types must be enabled explicitly by the
−Xexperimental compiler flag in Scala 2.8.

We can massage identity into a more precise version of
the implicit argument wildcard ? that we introduced earlier:

def ?[T <: AnyRef] (implicit w : T) : w.type = w

def add server =
In {x : Int⇒
In {y : Int⇒ System.out.println ("Thinking")
Out (x+ y,
Stop ())}}

def add client =
Out (3,

Out (4, {System.out.println ("Waiting")
In {z : Int⇒ System.out.println (z)
Stop ()}}))

Figure 8. An example session.

This version of ? may be used to access the implicit value
of type T . Its additional precision will be essential in the
examples below, which select type members on implicit ar-
guments. The following examples illustrate that the combi-
nation of implicit search and dependent method types is an
interesting recipe for type-level combination.

6.3 Session types
As our first example, we port a type class encoding of ses-
sion types (Honda 1993) by Kiselyov et al. (2009) to Scala.
Session types describe the relationship between the types of
a pair of communicating processes. A process is composed
of a sequence of smaller processes.

For example, the server process in Figure 8 takes two in-
tegers arguments as inputs and returns the sum of these two
integers as output. The corresponding client performs the
dual of the server process. The example uses the elementary
processes that are defined in Figure 9. The Stop process in-
dicates the end of communication, whereas In and Out pro-
cesses are paired to specify the flow of information during
the session. An In [a,b] process takes an input of type a, and
continue with a process of type b.2

Since they are duals, add client and add server form
a session. We capture the notion of duality in Figure 9.
The DualOf relation is defined in the comments using in-
ference rules. It is rendered in Scala as the Session trait,
which declares the relation on its type parameter S (which is
aliased as Self for convenience) and its abstract type mem-
ber Dual, which corresponds to an associated type. Thus, an
instance of type Session [S] {type Dual = D} is evidence
of S DualOf D; such a value witnesses this fact by describ-
ing how to compose an instance of S with an instance of D
(through the run method). StopSession, InDual and OutDual
describe what it “means” for each of the atomic process
types to be in a session with their respective duals by con-
structing the witness at the corresponding concrete types.

2 The + and − symbols denote, respectively, co-variance and contra-
variance of the type constructor in these type parameters (Emir et al. 2006).

sealed case class Stop
sealed case class In [−A,+B] (recv : A⇒ B)
sealed case class Out [+A,+B] (data : A,cont : B)

trait Session [S] {type Self = S; type Dual
type DualOf [D] = Session [Self] {type Dual = D}
def run (self : Self ,dual : Dual) : Unit
}
/∗

Stop DualOf Stop
StopDual

∗/
implicit object StopDual extends Session [Stop] {

type Dual = Stop

def run (self : Self ,dual : Dual) : Unit = {}
}
/∗

Cont DualOf ContD
In [Data,Cont] DualOf Out [Data,ContD]

InDual

∗/
implicit def InDual [D,C] (implicit cont : Session [C])

= new Session [In [D,C]] {
type Dual = Out [D, cont.Dual]

def run (self : Self ,dual : Dual) : Unit =
cont.run (self .recv (dual.data),dual.cont)

}
/∗

Cont DualOf ContD
Out [Data,Cont] DualOf In [Data,ContD]

OutDual

∗/
implicit def OutDual [D,C] (implicit cont : Session [C])

= new Session [Out [D,C]] {
type Dual = In [D, cont.Dual]

def run (self : Self ,dual : Dual) : Unit =
cont.run (self .cont,dual.recv (self .data))

}

Figure 9. Session types.

The expression InDual has the type3:

[D,C] (implicit cont : Session [C]) Session [In [D,C]] {
type Dual = Out [D,cont.Dual]}

This is a polymorphic dependent method type, where [D,C]
denotes the universal quantification ∀ D,C., (implicit cont :
Session [C]) describes the argument list, and

Session [In [D,C]] {type Dual = Out [D,cont.Dual]}

3 Note that this type is not expressible directly in the surface syntax.

case class Zero ()
case class Succ [N] (x : N)

trait ZipWith [N,S] {
type ZipWithType

def manyApp : N⇒ Stream [S]⇒ ZipWithType
def zipWith : N⇒ S⇒ ZipWithType =

n⇒ f ⇒ manyApp (n) (repeat (f))
}
def zWith [N,S] (n : N,s : S)

(implicit zw : ZipWith [N,S]) : zw.ZipWithType =
zw.zipWith (n) (s)

implicit def ZeroZW [S] = new ZipWith [Zero,S] {
type ZipWithType = Stream [S]

def manyApp = n⇒ xs⇒ xs
}
implicit def SuccZW [N,S,R]

(implicit zw : ZipWith [N,R]) =
new ZipWith [Succ [N],S⇒ R] {

type ZipWithType = Stream [S]⇒ zw.ZipWithType

def manyApp = n⇒ xs⇒ ss⇒ n match {
case Succ (i)⇒ zw.manyApp (i) (zapp (xs,ss))
}

}

Figure 10. N-ary zipWith.

is the method’s (inferred) result type, which depends on its
cont argument. Using the DualOf type alias, the modelled
relation can be made more explicit:

Session [In [D,C]]# DualOf [Out [D,cont.Dual]]

The same type alias is used in the context bound on runSession’s
D type parameter, which should be read as: “D must be cho-
sen so that S is the dual of D”. In our mathematical notion,
this is rendered as S DualOf D. To run the session, the evi-
dence of S and D being in the DualOf relation is recovered
using the ? method.

def runSession [S,D : Session [S]# DualOf]
(session : S,dual : D) =
?[Session [S]# DualOf [D]].run (session,dual)

def myRun = runSession (add server,add client)

6.4 Arity-polymorphic ZipWith in Scala
Typically, functional programming languages like Haskell
contain implementations of zipWith functions for two list
arguments:

zipWith :: (a→ b→ c)→ [a]→ [b]→ [c]
zipWith f (x : xs) (y : ys) = f x y : zipWith f xs ys
zipWith f =[]

McBride (2002) generalized such definition into an n-ary
zipWith function.

zipWithn :: (a1→ a2→ . . .→ an)→
([a1]→ [a2]→ . . .→ [an])

In other words, zipWithn is a function that given a function
with n arguments and n lists, provides a corresponding ver-
sion of the n-ary zipWith function. Similar challenges arise in
OO libraries that model databases as collections of N-tuples,
where the operations on these tuples should work for any N.
A more general variant of this problem is discussed by Kise-
lyov et al. (2004).

This example essentially performs type-level computa-
tion, since the return type [a1]→ [a2]→ . . .→ [an] is com-
puted from the argument type (a1 → a2 → . . .→ an). Fig-
ure 10 shows an implementation for the n-ary zipWith func-
tion in Scala. The types Zero and Succ [N] are Church en-
codings of the natural numbers at the type level.

The ZipWith trait is a concept interface with two type
arguments: N represents a natural number; and S is the type
of the function argument of zipWithn. The type member
ZipWithType determines the return type. The zWith method
is the interface for the n-ary zipWith function. The two
definitions ZeroZW and SuccZW provide two models that,
respectively, correspond to the base case (for N = 0) and
the inductive case. The functions repeat and zapp, used in
zipWith and manyApp are defined as:

def repeat [A] (x : A) : Stream [A] = cons (x,repeat (x))

def zapp [A,B] (xs : Stream [A⇒ B],ys : Stream [A]) =
(xs,ys) match {

case (cons (f , fs),cons (s,ss))⇒
cons (f (s),zapp (fs,ss))

case (,)⇒ Stream.empty
}

Some example client code is given next:

def zipWith0 : Stream [Int] = zWith (Zero (),0)

def map [A,B] (f : A⇒ B) : Stream [A]⇒ Stream [B] =
zWith (Succ (Zero ()), f)

def zipWith3 [A,B,C,D] (f : A⇒ B⇒ C⇒ D) :
Stream [A]⇒ Stream [B]⇒ Stream [C]⇒ Stream [D] =
zWith (Succ (Succ (Succ (Zero ()))), f)

6.5 ZipWith using prioritised overlapping implicits
Scala offers another solution for the n-ary zipWith prob-
lem, which avoids the explicit encoding of type-level nat-
ural numbers. This solution relies on Scala’s support for dis-
ambiguating overlapping implicits by explicitly prioritizing

trait ZipWith [S] {
type ZipWithType

def manyApp : Stream [S]⇒ ZipWithType
def zipWith : S⇒ ZipWithType =

f ⇒ manyApp (repeat (f))
}
class ZipWithDefault {

implicit def ZeroZW [S] = new ZipWith [S] {
type ZipWithType = Stream [S]

def manyApp = xs⇒ xs
}

}
object ZipWith extends ZipWithDefault {

def apply [S] (s : S) (implicit zw : ZipWith [S])
: zw.ZipWithType = zw.zipWith (s)

implicit def SuccZW [S,R]
(implicit zw : ZipWith [R]) = new ZipWith [S⇒ R] {
type ZipWithType = Stream [S]⇒ zw.ZipWithType

def manyApp = xs⇒ ss⇒
zw.manyApp (zapp (xs,ss))

}
}

Figure 11. N-ary zipWith using prioritised implicits.

the implicits. Although type classes in Haskell support over-
lapping instances, this solution is not directly applicable to
Haskell.

Figure 11 shows the alternative solution for the n-ary
zipWith problem. Notably, the trait ZipWith and the meth-
ods manyApp and zipWith are not parameterised by natural
numbers anymore.

When several implicit values are found for a certain type,
disambiguation proceeds by the standard rules for static
overloading. Finally, an additional tie-breaker rule is intro-
duced that gives priority to implicits that are defined in a
subclass over those in a parent class. That is why SuccZW
will be preferred over ZeroZW in case of ambiguity.

For example, both ZeroZW and SuccZW are possible
matches when an implicit of type S⇒ R is required. How-
ever, the ambiguity is resolved because SuccZW is defined
in a subclass of ZipWithDefault, which defines ZeroZW.

Using this solution, definitions for zipWith0 and map are:

def zipWith0 : Stream [Int] = ZipWith (0)
def map [A,B] (f : A⇒ B) : Stream [A]⇒ Stream [B] =

ZipWith (f)

6.6 Encoding generalized constraints
Generalized constraints (Emir et al. 2006) provide a way
to describe what it means for a type to be a subtype of

another type, and are used in practice in the Scala collection
libraries (Odersky and Moors 2009). For example, a classic
use-case for generalized constraints is the flatten method of
a collection with elements of type T: it is only applicable if
T is itself a collection. However, methods cannot constrain
the type parameters of the class in which they are defined.
We can represent this subtyping constraint indirectly as a
function from T to the collection type Traversable [U]. This
coercion can be seen as a witness to the subtype relation.
Clearly, the caller of the method should not have to provide
this witness explicitly.

sealed abstract class<:<[−S,+T] extends (S⇒ T)
implicit def conforms [A] : A<:<A = new (A<:<A) {

def apply (x : A) = x}
trait Traversable [T] {

type Coll [X]
def flatten [U] (implicit w : T <:<Traversable [U])

: Coll [U]
}

To address this problem in Scala, we encode generalized
constraints using the type constructor <:<. The trick is to
use variance to extend the fact A <:< A (witnessed by the
implicit value conforms [A]) to the facts S <: T for any S
and T , where S <: A and A <: T . According to the variance
of the type constructor <:<, a value of type A <: A can be
used when a value of type S <: T is expected. When type
checking a call to flatten on a Traversable [List [Int]], for
example, an implicit of type List [Int]<:< Traversable [?U]
is searched, where ?U denotes the type variable that is used
to infer the concrete type for U. Since conforms [List [Int]] is
the only solution, ?U is inferred to be Int. Moreover, as <:<
is a (higher-order) subtype of ⇒, w is used as an implicit
conversion in the body of flatten to convert expressions of
type T to expressions of type Traversable [U].

This example shows that functional dependencies (Jones
2000) are specified in Scala by the order of arguments and
their grouping into argument lists. Type inference proceeds
from left to right, with constraints being solved per argument
list, so that, once a type variable is solved, the arguments in a
later argument list have to abide. In implicit argument lists,
the constraints that arise from the search for each implicit
argument are solved immediately, so that implicit arguments
must respect the instantiations of the type variables that
result from these earlier arguments. Finally, as the implicit
argument list must come last, implicit search cannot actively
guide type inference in the explicit argument lists, although
it can veto its results post factum.

6.7 Type theories using implicits
To conclude this section, we briefly discuss the pattern
that underlies the previous examples: the idea of describ-
ing relations on types using implicits, which introduces a
lightweight form of type-level computation. This pattern

is applied in the Scala 2.8 collection library (Odersky and
Moors 2009) to specify how transformations on collections
affect the types of the elements and their containers.

Specifically, the CanBuildFrom [From,El,To] relation is
used to specify that the collection To can store elements of
type El after transforming a collection of type From. This
relation can be thought of as a function from the types From
and El to the type of the derived collection To.

The crucial feature that makes defining these relations on
types practical is the connection between implicit search and
type inference. In fact, implicit search can be thought of as a
generalization of type inference to values. Thus, a relation on
types can be modeled by a type constructor of the same arity
as the relation, where a tuple of types is considered in this
relation if there is an implicit value of the type that results
from applying the relation’s type constructor to the concrete
type arguments in the tuple.

To summarize, the examples described in this section are
modeled using several type-level relations: the duality of
two sessions; the relation between the argument and return
type of the n-ary zipWith function; and <:<, the generalized
constraint relation.

7. Discussion and Related Work
This section discusses the results of this paper and presents
some related work. Also, an existing comparison between
different languages in terms of their support for generic
programming in the large (Siek and Lumsdaine 2008) is
revised to include Scala and JavaGI. This comparison shows
that Scala is very suitable for generic programming in the
large.

7.1 Real-world applications
Implicits are widely used by Scala programmers. The largest
real-world application of some of the techniques presented
in this paper is probably the newly designed Scala collec-
tions library that ships as part of Scala 2.8. Odersky and
Moors (2009) report their experiences in redesigning the
Scala collections and argue that implicits, and their ability to
specify piece-wise type-level functions, play a crucial role in
their design.

In retrospect, the results reported by Odersky and Moors
are not too surprising. The C++ generic programming com-
munity has long learned to appreciate the value of associ-
ated types to define such piece-wise functions for collec-
tion types. The developments presented in Section 6 show
how associated types can be more naturally defined us-
ing type members and dependent method types. The stan-
dard template library (STL) (Musser and Saini 1995) and
Boost (Boost) libraries are prime examples of generic pro-
gramming with C++ templates. In some sense, Scala’s 2.8
collections can be viewed as the STL/Boost of Scala.

In the functional programming communities the term
“generic programming” is often used to mean datatype-

generic programming (DGP) (Gibbons 2003). DGP can be
viewed as an advanced form of generic programming in
which the structure of types is used to derive generic algo-
rithms. Oliveira and Gibbons (2008) show that Scala is par-
ticularly well-suited for DGP and that it is, in some ways,
better than Haskell. This is partly due to the flexibility of
implicits in comparison with type classes.

7.2 Type classes, JavaGI and concepts
Type classes Haskell type classes were originally designed
as a solution for ad-hoc polymorphism (Hall et al. 1996;
Wadler and Blott 1989). Many languages have mechanisms
inspired by type classes (Gregor et al. 2006; Haftmann and
Wenzel 2006; Shapiro et al. 2008; Sozeau and Oury 2008;
Wehr 2009), and implicits are no exception. Implicits are the
minimal delta needed to enable type class programming in
an OOPL with support for parametric polymorphism. This
extension can be seen as untangling type classes into the (ex-
isting) OO class system, and a mechanism for type-directed
implicit parameter passing. The most obvious downside of
the untangling approach is that implicit values and implicit
arguments must play by the rules that also govern normal
values and arguments: that is, they must be named. However,
these names are useful when disambiguation is needed, and,
at least for implicit arguments, they can be eschewed using
context bounds. Finally, the OO philosophy of limiting type
inference to the inside of encapsulation boundaries entails
that context bounds are not inferred, unlike in Haskell.

Nevertheless, this untangling has several benefits. Im-
plicit arguments may still be passed explicitly when nec-
essary, while Haskell requires duplication when the dictio-
nary needs to be passed explicitly. For example a sort func-
tion (in which the ordering dictionary is passed implicitly),
and a sortBy function (in which the ordering dictionary is
passed explicitly) are needed in Haskell. Furthermore, since
a type class is encoded as a first-class type, the language’s
full range of polymorphism applies. In Haskell, it is not pos-
sible to directly abstract over a type class (Hughes 1999).

Several authors noted that Haskell type classes can be
limiting for certain applications due to the impossibility
of explicitly passing arguments and abstracting over type
classes (Dijkstra and Swierstra 2005; Hughes 1999; Kahl
and Scheffczyk 2001; Lämmel and Jones 2005; Oliveira and
Gibbons 2008; Oliveira and Sulzmann 2008). Thus, there
have been a number of proposals aimed at lifting some of
these restrictions (Dijkstra and Swierstra 2005; Kahl and
Scheffczyk 2001; Orchard and Schrijvers 2010). However,
none of these proposals has been adopted in Haskell. There
is also a proposal for an ML-module system that allows
modules to be implicitly passed based on their types, thus
allowing many typical type class programs to be recovered
by suitably marking module parameters as implict (Dreyer
et al. 2007).

Type class extensions such as functional dependencies (Jones
2000), associated types (Chakravarty et al. 2005b), as-

sociated datatypes (Chakravarty et al. 2005a), and type-
families (Schrijvers et al. 2008) provide simple forms of
type-level computation. This work shows that by combin-
ing type members and dependent method types it is pos-
sible to encode associated types, which are a fundamen-
tal mechanism for supporting advanced forms of generic
programming (Garcia et al. 2007). Furthermore, prioritized
overlapping implicits allow the definition of type-level func-
tions with a default, catch-all case, that can be overridden
by other cases in subclasses. This functionality provides a
limited form of concept-based overloading (Siek and Lums-
daine 2008). In Haskell such overlapping definitions are for-
bidden for associated types and type-families (Chakravarty
et al. 2005b; Schrijvers et al. 2008); and have limited appli-
cability with functional dependencies. Type-families allow
a natural definition of type-level functions, whereas type
members and dependent method types can only express such
definitions indirectly. It would be interesting to explore a
mechanism similar to type-families in the context of OO
languages.

JavaGI Inspired by Lämmel and Ostermann (2006), Wehr
(2009) proposes JavaGI: a variant of Java aimed at bring-
ing the benefits of type classes into Java. JavaGI provides
an alternative viewpoint in the design space of type-class-
like mechanisms in OO languages. JavaGI has generalized
interfaces and generalized interface implementations in ad-
dition to conventional OO interfaces and classes. Scala,
on the other hand, models type-class-like mechanisms us-
ing the conventional OO class system. JavaGI supports a
form of dynamic multiple dispatching in a similar style to
multi-methods (Chambers and Leavens 1995; Clifton et al.
2000). This allows JavaGI to express open classes (Clifton
et al. 2000) through retroactive implementations. Scala is
less expressive in this respect as it does not support dy-
namic multiple dispatching; only static multiple dispatching
is supported. However, Scala supports fully modular type-
checking, which is not the case for JavaGI.

Concepts Concepts (Musser and Saini 1995) are an impor-
tant notion for C++ style generic programming. They de-
scribe a set of requirements for the type parameters used by
a generic algorithm. Although concepts are widely used by
the C++ community to document generic algorithms, current
versions of C++ have no representation for concepts within
the C++ language. Nevertheless the situation is likely to
change. Gregor et al. (2006) proposed linguistic support for
concepts in C++. Moreover, motivated by the lack of modu-
lar typechecking and separate compilation in C++, concepts
have been studied in the FG calculus (Siek and Lumsdaine
2005) and the G language (Siek and Lumsdaine 2008).

Concepts are closely related to type classes and there is a
fairly accepted idea that type classes can be viewed as an al-
ternative language mechanism to express concepts (Bernardy
et al. 2008). Indeed, in several comparative studies, type
classes score very well when it comes to language sup-

C++ SML OCaml Haskell Java C# Cecil C++0X G JavaGI Scala

Multi-type concepts - # 2 2 G# 2

Multiple constraints - G# G#
Associated type access G# G# G# G# G# 1

Constraints on assoc. types - G# G# G# 1

Retroactive modeling - G#2 G#2 23

Type aliases # # # #
Separate compilation # G# #
Implicit arg. deduction # G#5 G#5 G# 3

Modular type checking # G# G# G# G#
Lexically scoped models # # # # # # # #
Concept-based overloading # # # # # G# # G#4

Equality constraints - # # # # #
First-class functions # # G# G# #

Figure 12. Level of support for generic programming in several languages. Key: =‘good’, G#=‘sufficient’, #=‘poor’
support. The rating “-” in the C++ column indicates that while C++ does not explicitly support the feature, one can still
program as if the feature were supported. Notes: 1) supported via type members and dependent method types 2) supported via
the CONCEPT pattern 3) supported via implicits 4) partially supported by prioritized overlapping implicits 5) decreased score
due to the use of the CONCEPT pattern

port for generic programming (Garcia et al. 2007; Siek and
Lumsdaine 2008) (see also Figure 12). However, there are
some differences in purpose between type classes and im-
plicits, and concepts in C++. In C++ performance is con-
sidered as a critical requirement, and the template mecha-
nism is designed so that, at compile-time, templated code
is specialized. Thus a potential mechanism for expressing
concepts in C++ should not jeopardize these performance
benefits (Dos Reis and Stroustrup 2006). In contrast, the
main motivation for type classes and implicits is abstraction
and convenience, providing additional flexibility through
indirection, at the potential cost of run-time performance.
Although Scala already supports some user-driven type spe-
cialization (Dragos and Odersky 2009), further work needs
to be done to investigate whether implicits could be adapted
to a system supporting full compile-time specialization.

The CONCEPT pattern is aimed at expressing concepts
using a standard OO class system without the performance
constraints of C++. In an OO language like Scala, the CON-
CEPT pattern, combined with implicits and support for asso-
ciated types through type members and dependent method
types, provides an effective platform for generic program-
ming in the large.

7.3 Generic programming in the large
In studies by Garcia et al. (2007); Siek and Lumsdaine
(2008), support for generic programming in several differ-
ent languages is investigated, with particular emphasis on
how such languages can model concepts. Figure 12 shows
the level of support for generic programming in various lan-
guages. For the most part the scores are inherited from the
study presented by Siek and Lumsdaine (2008). We added

the scores for JavaGI and Scala and adjusted a couple of
scores in Java and C#. The scores for JavaGI are derived
from the related work discussions by Wehr (2009); we did
not do any experiments with JavaGI. These scores and ad-
justments are discussed next.

Adjustments on Java and C# scores In the original com-
parison, Siek and Lumsdaine (2008) give Java and C# bad
scores at both multi-type concepts and retroactive model-
ing. The main reason for those scores is that concepts are
modeled by a conventional subtyping hierarchy. For exam-
ple, the Comparable concept and the corresponding Apple
model, are implemented as follows:

trait Comparable [T] {
def better (x : T) : Boolean
}
public class Apple extends Comparable [Apple] {. . .}

As discussed in Section 4 this solution is problematic
for supporting retroactive modeling and multi-type concepts.
In contrast, if the CONCEPT is used, models can be added
retroactively and multi-type concepts can be expressed con-
veniently. The drawback of the CONCEPT solution in lan-
guages like Java or C#, as also discussed in Section 4, is that
there is some additional overhead to use conceptual meth-
ods. This is reflected in the score for retroactive modeling,
which is only sufficient, since support for this feature is not
as natural as it could be. Also, the score for implicit argu-
ment deduction is affected by the use of the CONCEPT pat-
tern because the concept constraints have to be passed ex-
plicitly. In Java and C#, the original solution using bounded

polymorphism is better in this respect because no such over-
head exists.

JavaGI Since JavaGI is a superset of Java, it inherits most
of its scores. In JavaGI retroactive modeling and multi-type
concepts are naturally supported through generalized inter-
faces. Wehr (2009) explicitly states that lexically scoped
models and concept-based overloading are not supported.
Furthermore, although type-checking is mostly modular, a
final global check is necessary. Thus JavaGI only partially
supports modular type-checking.

Scala Using the CONCEPT pattern we can model multi-
type concepts, multiple constraints and support retroactive
modeling. Furthermore, Scala’s support for implicits means
that the drawbacks of the Java and C# solutions in terms of
the additional overhead, do not apply to Scala. Thus, Scala
scores well in both the implicit argument deduction and the
retroactive modeling criteria. Section 6 shows that associ-
ated types are supported in Scala through type members
and dependent method types, and type members can also
be used as type aliases. As shown in Section 3, Scala sup-
ports lexically scoped models. Furthermore type-checking
is fully modular. Prioritized overlapping implicits provide
some support for concept-based overloading as illustrated by
the zipWithN example in Section 6.5. However, overlapping
models have to be structured using a subtyping hierarchy,
which may not always be desirable. Thus, the score for this
feature is only sufficient. Finally, Scala has full support for
first-class functions and it also supports equality constraints.

In summary Scala turns out to be a language with excel-
lent support for generic programming features, managing to
fare at the same level, or even slightly better, than G (which
was specially designed as a language for generic program-
ming in the large) or Haskell (which has been recognized
has having very good support for generic programming).

8. Conclusion
This paper shows that it is possible to have the benefits of
type classes in a standard OO language with generics, by
using the CONCEPT pattern to express type-class style pro-
grams. However some convenience is lost, especially for tra-
ditional applications aimed at using type classes for con-
strained polymorphism.

Implicits are a modest extension that can be added to stat-
ically typed languages. Implicits bring back the convenience
of use of type classes, but they have wider applicability and
are useful in several other domains. With the improved sup-
port for type-inference that we are already seeing in main-
stream languages like Java or C#, it is only natural to expect
that implicits will eventually find their way into those lan-
guages.

Type members and dependent method types add extra
power to the language and a combination of the two mech-
anisms allows associated types to be expressed. In combi-
nation with implicits, type members and dependent method

types make Scala an language ready for generic program-
ming in the large.

Acknowledgments
This work benefited from several discussions that we had
with William Cook. We are grateful to Tom Schrijvers,
Jonathan Shapiro and Marcin Zalewski for their useful com-
ments. Bruno Oliveira was supported by the Engineering
Research Center of Excellence Program of Korea Ministry
of Education, Science and Technology (MEST) / Korea Sci-
ence and Engineering Foundation (KOSEF) grant number
R11-2008-007-01002-0.

References
J. P. Bernardy, P. Jansson, M. Zalewski, S. Schupp, and A. Priesnitz.

A comparison of C++ concepts and Haskell type classes. In
WGP ’08, pages 37–48, 2008.

Boost. The Boost C++ libraries. http://www.boost.org/, 2010.

K. Bruce, L. Cardelli, G. Castagna, G. T. Leavens, and B. Pierce.
On binary methods. Theor. Pract. Object Syst., 1(3):221–242,
1995.

P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell. F-
bounded polymorphism for object-oriented programming. In
FPCA ’89, pages 273–280, 1989.

M. Chakravarty, G. Keller, S. Peyton Jones, and S. Marlow. Asso-
ciated types with class. pages 1–13, 2005a.

M. Chakravarty, G. Keller, and Simon Peyton Jones. Associated
type synonyms. In ICFP ’05, pages 241–253, 2005b.

C. Chambers and G. T. Leavens. Typechecking and modules for
multimethods. ACM Transactions on Programming Languages
and Systems, 17(6):805–843, 1995.

C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. Multi-
Java: modular open classes and symmetric multiple dispatch for
Java. In OOPSLA ’00, pages 130–145, 2000.

W. R. Cook. On understanding data abstraction, revisited. SIG-
PLAN Not., 44(10):557–572, 2009.

W. R. Cook and J. Palsberg. A denotational semantics of inheri-
tance and its correctness. Inf. Comput., 114(2):329–350, 1994.

O. Danvy. Functional unparsing. J. Funct. Program., 8(6):621–
625, 1998.

A. Dijkstra and S. D. Swierstra. Making implicit parameters ex-
plicit. Technical report, Institute of Information and Computing
Sciences, Utrecht University, 2005. URL http://www.cs.uu.

nl/research/techreps/UU-CS-2005-032.html.

G. Dos Reis and B. Stroustrup. Specifying C++ concepts. In POPL
’06, pages 295–308, 2006.

I. Dragos and M. Odersky. Compiling generics through user-
directed type specialization. In ICOOOLPS ’09, pages 42–47,
2009.

D. Dreyer, R. Harper, M. M. T. Chakravarty, and G. Keller. Modular
type classes. In POPL ’07, pages 63–70, 2007.

B. Emir, A. Kennedy, C. V. Russo, and D. Yu. Variance and
generalized constraints for C# generics. In ECOOP, pages 279–
303, 2006.

R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock. An
extended comparative study of language support for generic
programming. J. Funct. Program., 17(2):145–205, 2007.

J. Gibbons. Patterns in datatype-generic programming. In The
Fun of Programming, Cornerstones in Computing, pages 41–60.
Palgrave, 2003.

D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and
A. Lumsdaine. Concepts: linguistic support for generic pro-
gramming in C++. In OOPSLA ’06, pages 291–310, 2006.

F. Haftmann and M. Wenzel. Constructive type classes in Isabelle.
In TYPES, pages 160–174, 2006.

C. V. Hall, K. Hammond, S. Peyton Jones, and P. Wadler. Type
classes in Haskell. ACM Trans. Program. Lang. Syst., 18(2):
109–138, 1996.

K. Honda. Types for dynamic interaction. In CONCUR ’93, pages
509–523, 1993.

J. Hughes. Restricted data types in Haskell. In Haskell Workshop,
1999.

J. Järvi, A. Lumsdaine, J. Siek, and J. Willcock. An analysis of con-
strained polymorphism for generic programming. In MPOOL
’03, page 87–107, 2003.

M. P. Jones. Type classes with functional dependencies. In ESOP
’00, pages 230–244, 2000.

W. Kahl and J. Scheffczyk. Named instances for Haskell type
classes. In Haskell Workshop, 2001.

A. Kennedy and C. V. Russo. Generalized algebraic data types and
object-oriented programming. OOPSLA ’05, pages 21–40, 2005.

O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed hetero-
geneous collections. In Haskell ’04, pages 96–107, 2004.

O. Kiselyov, S. Peyton Jones, and C. Shan. Fun with type functions,
2009. URL http://research.microsoft.com/en-us/um/

people/simonpj/papers/assoc-types/.

R. Lämmel and S. P. Jones. Scrap your boilerplate with class:
extensible generic functions. In ICFP ’05, pages 204–215, 2005.

R. Lämmel and K. Ostermann. Software extension and integration
with type classes. In GPCE ’06, pages 161–170, 2006.

D. B. MacQueen. Modules for Standard ML. In LISP and Func-
tional Programming, pages 198–207, 1984.

C. McBride. Faking it: Simulating dependent types in Haskell. J.
Funct. Program., 12(5):375–392, 2002.

J. C. Mitchell and G. D. Plotkin. Abstract types have existential
type. ACM Trans. Program. Lang. Syst., 10(3):470–502, 1988.

A. Moors, F. Piessens, and M. Odersky. Generics of a higher kind.
In OOPSLA ’08, pages 423–438, 2008.

D. Musser and A. A. Stepanov. Generic programming. In Symbolic
and algebraic computation: ISSAC 88, pages 13–25. Springer,
1988.

D. R. Musser and A. Saini. The STL Tutorial and Reference
Guide: C++ Programming with the Standard Template Library.
Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1995.

M. Odersky, 2006. URL http://www.artima.com/weblogs/

viewpost.jsp?thread=179766.

M. Odersky. The Scala Language Specification, Version 2.8. EPFL,
2010. URL http://www.scala-lang.org/docu/files/

ScalaReference.pdf.

M. Odersky and A. Moors. Fighting bit rot with types (experience
report: Scala collections). In FSTTCS, pages 427–451, 2009.

M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory
of objects with dependent types. In ECOOP03, pages 201–224.
Springer-Verlag, 2003.

M. Odersky, P. Altherr, V. Cremet, I. Dragos, G. Dubochet, B. Emir,
S. McDirmid, S. Micheloud, N. Mihaylov, M. Schinz, L. Spoon,
E. Stenman, and M. Zenger. An Overview of the Scala Program-
ming Language (2. edition). Technical report, EPFL, 2006.

B. C. d. S. Oliveira and J. Gibbons. Scala for generic programmers.
In WGP ’08, pages 25–36, 2008.

B. C. d. S. Oliveira and M. Sulzmann. Objects to unify type classes
and GADTs. April 2008. URL http://www.comlab.ox.ac.

uk/people/Bruno.Oliveira/objects.pdf.

D. Orchard and T. Schrijvers. Haskell type constraints unleashed.
In FLOPS ’10. Springer-Verlag, 2010.

S. Peyton Jones, editor. Haskell 98 Language and Libraries –
The Revised Report. Cambridge University Press, Cambridge,
England, 2003.

S. Peyton Jones, M. Jones, and E. Meijer. Type classes: exploring
the design space. In Haskell Workshop, 1997.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Sim-
ple unification-based type inference for GADTs. In ICFP ’06,
pages 50–61, 2006.

S. Peyton Jones, S. Marlow, et al. The Glasgow Haskell Compiler,
2009. URL http://www.haskell.org/ghc/.

T. Schrijvers, S. Peyton Jones, M. Chakravarty, and M. Sulzmann.
Type checking with open type functions. In ICFP ’08, pages
51–62, 2008.

J. S. Shapiro, S. Sridhar, and M. S. Doerrie. BitC language speci-
fication, 2008. URL http://www.coyotos.org/docs/bitc/

spec.html.

J. G. Siek and A. Lumsdaine. Essential language support for
generic programming. In PLDI ’05, pages 73–84, 2005.

J. G. Siek and A. Lumsdaine. A language for generic programming
in the large. Science of Computer Programming, In Press, Cor-
rected Proof, 2008. URL http://www.sciencedirect.

com/science/article/B6V17-4TJ6F7D-1/2/

7d624b842e8dd84e792995d3422aee21.

M. Sozeau and N. Oury. First-class type classes. In TPHOLs ’08,
pages 278–293, 2008.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In POPL ’89, pages 60–76, 1989.

S. Wehr. JavaGI: A Language with Generalized Interfaces. PhD
thesis, University of Freiburg, Department of Computer Science,
December 2009.

class Ord a where
eq :: a→ a→ Bool
compare :: a→ a→ Bool

instance Ord Int where
eq a b = compare a b ∧ compare b a
compare x y = x 6 y

instance Ord a⇒ Ord [a] where
eq a b = compare a b ∧ compare b a
compare l1 l2 = case (l1, l2) of

(x : xs,y : ys)→ if (eq x y) then compare xs ys
else compare x y

(, [])→ False
(,) → True

Figure 13. Ordering concept in Haskell (cf. Figure 3)

class Set s where
empty :: s
insert :: s→ Int→ s
contains :: s→ Int→ Bool
union :: s→ s→ s

instance Set [Int] where
empty = []
insert = λx y→ y : x
contains = λx y→ elem y x
union = λx y→ List.union x y

instance Set (Int→ Bool) where
empty = λx→ False
insert = λ f y z→ y≡ z ∧ f z
contains = λ f y→ f y
union = λ f g y→ f y ∨ g y

Figure 14. A Set ADT using Type Classes (cf. Figure 5)

A. Type Class Examples in Haskell
This section shows the Haskell versions of the programs
used in this paper.

class Format a where
format :: String→ a

printf :: Format a⇒ a
printf = format ""
instance Format a⇒ Format (Int→ a) where -- I

format s = λ i→ format (s++ show i)

instance Format a⇒ Format (Char→ a) where -- C
format s = λc→ format (s++ show c)

instance Format String where -- E
format s = s

Figure 15. Printf using Type Classes (cf. Figure 6)

class Session a where
type Dual a

run :: a→ Dual a→ IO ()

instance (Session b)⇒ Session (In a b) where
type Dual (In a b) = Out a (Dual b)

run (In f) (Out a d) = f a>>=λb→ d >>=λc→ run b c

instance (Session b)⇒ Session (Out a b) where
type Dual (Out a b) = In a (Dual b)

run (Out a d) (In f) = f a>>=λb→ d >>=λc→ run c b

instance Session Stop where
type Dual Stop = Stop

run Done Done = return ()

Figure 16. Session types (cf. Figure 9)

data Zero = Zero
data Succ n = Succ n
class ZipWith n s where

type ZipWithType n s

manyApp :: n→ [s]→ ZipWithType n s
zipWithN :: n→ s→ ZipWithType n s
zipWithN n f = manyApp n (repeat f)

instance ZipWith Zero t where
type ZipWithType Zero t = [t]

manyApp Zero fs = fs

instance ZipWith n u⇒ ZipWith (Succ n) (s→ u) where
type ZipWithType (Succ n) (s→ u) = [s]→ ZipWithType n u

manyApp (Succ n) fs = λ ss→ manyApp n (fs<< ss)

Figure 17. N-Ary zipWith using associated types (cf. Fig-
ure 10)

